- 1. At time $t \ge 0$, a particle moving in the xy-plane has velocity vector given by $v(t) = \langle t^2, 5t \rangle$. What is the acceleration vector of the particle at time t = 3?
- (A) $\left\langle 9, \frac{45}{2} \right\rangle$
- (B) $\langle 6,5 \rangle$ (C) $\langle 2,0 \rangle$ (D) $\sqrt{306}$
- (E) $\sqrt{61}$

2)

A particle moves in the xy-plane with position given by $(x(t), y(t)) = (5 - 2t, t^2 - 3)$ at time t. In which direction is the particle moving as it passes through the point (3, -2)?

- (A) Up and to the left
- (B) Down and to the left
- (C) Up and to the right
- (D) Down and to the right
- (E) Straight up

3)

Which of the following integrals gives the area of the region that is bounded by the graphs of the polar equations $\theta = 0$, $\theta = \frac{\pi}{4}$, and $r = \frac{2}{\cos \theta + \sin \theta}$?

- (A) $\int_{0}^{\pi/4} \frac{1}{\cos \theta + \sin \theta} d\theta$
- (B) $\int_0^{\pi/4} \frac{2}{\cos\theta + \sin\theta} \, d\theta$
- (C) $\int_0^{\pi/4} \frac{2}{(\cos\theta + \sin\theta)^2} d\theta$
- (D) $\int_0^{\pi/4} \frac{4}{(\cos\theta + \sin\theta)^2} d\theta$
- (E) $\int_{0}^{\pi/4} \frac{2(\cos\theta \sin\theta)^2}{(\cos\theta + \sin\theta)^4} d\theta$

4)

If $x(t) = t^2 + 4$ and $y(t) = t^4 + 3$, for t > 0, then in terms of t, $\frac{d^2y}{dx^2} =$

- (A) $\frac{1}{2}$ (B) 2 (C) 4t (D) $6t^2$ (E) $12t^2$

5)

If $\frac{dy}{dt} = -10e^{-t/2}$ and y(0) = 20, what is the value of y(6)?

- (A) $20e^{-6}$ (B) $20e^{-3}$ (C) $20e^{-2}$ (D) $10e^{-3}$ (E) $5e^{-3}$

6)

Which of the following gives the length of the path described by the parametric equations $x = \sin(t^3)$ and $y = e^{5t}$ from t = 0 to $t = \pi$?

(A)
$$\int_0^{\pi} \sqrt{\sin^2(t^3) + e^{10t}} dt$$

(B)
$$\int_0^{\pi} \sqrt{\cos^2(t^3) + e^{10t}} dt$$

(C)
$$\int_0^{\pi} \sqrt{9t^4 \cos^2(t^3) + 25e^{10t}} dt$$

(D)
$$\int_0^{\pi} \sqrt{3t^2 \cos(t^3) + 5e^{5t}} dt$$

(E)
$$\int_0^{\pi} \sqrt{\cos^2(3t^2) + e^{10t}} dt$$

7)

. Which of the following expressions gives the total area enclosed by the polar curve $r = \sin^2 \theta$ shown in the figure above?

$$(A) \frac{1}{2} \int_0^{\pi} \sin^2 \theta d\theta$$

(B)
$$\int_0^{\pi} \sin^2 \theta d\theta$$

(C)
$$\frac{1}{2} \int_0^{\pi} \sin^4 \theta d\theta$$

(D)
$$\int_0^{\pi} \sin^4 \theta d\theta$$

(E)
$$2\int_0^{\pi} \sin^4\theta d\theta$$

For $0 \le t \le 13$ an object travels along an elliptical path given by the parametric equations $x = 3\cos t$ and $y = 4\sin t$. At the point where t = 13, the object leaves the path and travels along the line tangent to the path at that point. What is the slope of the line on which the object travels?

- (A) $-\frac{4}{3}$
- (B) $-\frac{3}{4}$
- (C) $-\frac{4\tan 13}{3}$
- (D) $-\frac{4}{3\tan 13}$
- (E) $-\frac{3}{4 \tan 13}$

9)

A curve C is defined by the parametric equations $x = t^2 - 4t + 1$ and $y = t^3$. Which of the following is an equation of the line tangent to the graph of C at the point (-3,8)?

- (A) x = -3
- (B) x = 2
- (C) y = 8
- (D) $y = -\frac{27}{10}(x+3) + 8$
- (E) y = 12(x+3) + 8

10) A particle moves in the xy-plane so that its position at any time t is given by $x(t) = t^2$ and $y(t) = \sin(4t)$. What is the speed of the particle when t = 3?

- a) 2.909
- b) 3.062
- c) 6.884
- d) 9.016
- e) 47.393

11)

The distance traveled by a particle from t = 0 to t = 4 whose position is given by the vector $\stackrel{\mathsf{v}}{s}(t) = \langle t^2, t \rangle$ is given by

- (A) $\int_{0}^{4} \sqrt{4t+1}dt$ (B) $2\int_{0}^{4} \sqrt{t^2+1}dt$ (C) $\int_{0}^{4} \sqrt{2t^2+1}dt$ (D) $\int_{0}^{4} \sqrt{4t^2+1}dt$ (E) $2\pi \int_{0}^{4} \sqrt{4t^2+1}dt$

ANSWER KEY

- 1. B (2008 #1)
- 2. A (2015 #8)
- 3. C (2015 #15)
- 4. B (2015 #17)
- 5. B (2015 #18)
- 6. C (2008 #5)
- 7. D (2008 #26)
- 8. D (2003 #4)
- 9. A (2003 #17)
- 10. C (2003 #84)
- 11. D (yang review)